Abstract
The applications of artificial intelligence (AI) in temporal bone (TB) imaging have gained significant attention in recent years, revolutionizing the field of otolaryngology and radiology. Accurate interpretation of imaging features of TB conditions plays a crucial role in diagnosing and treating a range of ear-related pathologies, including middle and inner ear diseases, otosclerosis, and vestibular schwannomas. According to multiple clinical studies published in the literature, AI-powered algorithms have demonstrated exceptional proficiency in interpreting imaging findings, not only saving time for physicians but also enhancing diagnostic accuracy by reducing human error. Although several challenges remain in routinely relying on AI applications,the collaboration between AI and healthcare professionals holds the key to better patient outcomes and significantly improved patient care. This overview delivers a comprehensive update on the advances of AI in the field of TB imaging, summarizes recent evidence provided by clinical studies, and discusses future insights and challenges in the widespread integration of AI in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.