Abstract
Artificial intelligence and specifically machine learning applications are nowadays used in a variety of scientific applications and cutting-edge technologies, where they have a transformative impact. Such an assembly of statistical and linear algebra methods making use of large data sets is becoming more and more integrated into chemistry and crystallization research workflows. This review aims to present, for the first time, a holistic overview of machine learning and cheminformatics applications as a novel, powerful means to accelerate the discovery of new crystal structures, predict key properties of organic crystalline materials, simulate, understand, and control the dynamics of complex crystallization process systems, as well as contribute to high throughput automation of chemical process development involving crystalline materials. We critically review the advances in these new, rapidly emerging research areas, raising awareness in issues such as the bridging of machine learning models with first-principles mechanistic models, data set size, structure, and quality, as well as the selection of appropriate descriptors. At the same time, we propose future research at the interface of applied mathematics, chemistry, and crystallography. Overall, this review aims to increase the adoption of such methods and tools by chemists and scientists across industry and academia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.