Abstract

In water treatment processes (WTPs), artificial intelligence (AI) based techniques, particularly machine learning (ML) models have been increasingly applied in decision-making activities, process control and optimization, and cost management. At least 91 peer-reviewed articles published since 1997 reported the application of AI techniques to coagulation/flocculation (41), membrane filtration (21), disinfection byproducts (DBPs) formation (13), adsorption (16) and other operational management in WTPs. In this paper, these publications were reviewed with the goal of assessing the development and applications of AI techniques in WTPs and determining their limitations and areas for improvement. The applications of the AI techniques have improved the predictive capabilities of coagulant dosages, membrane flux, rejection and fouling, disinfection byproducts (DBPs) formation and pollutants’ removal for the WTPs. The deep learning (DL) technology showed excellent extraction capabilities for features and data mining ability, which can develop an image recognition-based DL framework to establish the relationship among the shapes of flocs and dosages of coagulant. Further, the hybrid techniques (e.g., combination of regression and AI; physical/kinetics and AI) have shown better predictive performances. The future research directions to achieve better control for WTPs through improving these techniques were also emphasized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call