Abstract

Examples of the utility of UV optical nitrate sensors are provided for two field applications, investigating nitrate pollution in a lowland, peri-urban catchment. In one application, rapid, in-stream longitudinal nitrate surveys were made in summer and winter, by fixing an optical nitrate sensor operating in continuous measurement mode to a kayak that was paddled along 10km of the mainstem of the low-order stream in under 4h. Nitrate concentrations ranged between 3.45 and 6.39mg NO3-N/L. Nitrate hot-spots and cool-spots were mapped and found to relate to point discharges from spring-fed tributaries and land drains. Effective nitrate removal (dN/dx = - 0.08mgN/L/km), inferred to be from assimilation reactions, was evident in the summer dataset, but not the winter nitrate dataset. In a second application, the optical sensor was configured with appropriate technology to establish an autonomous and fully automated nitrate monitoring station. The station makes daily nitrate measurements of surface water, and groundwater, sampled from a cluster of four multi-level wells. Quarterly maintenance of the nitrate sensor has proven sufficient to keep measurement errors under 5%. Most nitrate variation has been recorded at or near the water table where concentrations have ranged between 3.47 and 5.88mg NO3-N/L, and annual maxima have occurred in late winter/spring, which coincides with when most nitrate leaching occurs from agricultural land. Seasonal nitrate patterns are not evident in groundwater sampled from 8-m depth, or deeper. High-frequency monitoring has revealed that some infra-season, short-term variability also occurs in shallow groundwater nitrate, driven by storm events, and which on occasion results in a temporary inversion of the groundwater nitrate-depth profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.