Abstract

Biological sequences have been represented graphically through 2D and 3D-Dynamic Representations of DNA/RNA Sequences - theoretical methods for the graphical representation of the sequences developed by us previously. In these approaches, some ideas of the classical dynamics have been introduced to bioinformatics. The sequences are represented by sets of material points in 2D or 3D spaces. The distribution of the points in space is characteristic of the sequence. The numerical parameters (descriptors) characterizing the sequences correspond to the quantities typical of classical dynamics. Some applications of the theoretical methods have been briefly reviewed. 2D-dynamic graphs representing the complete genome sequences of SARS-CoV-2 are shown. It is proved that the 3D-Dynamic Representation of DNA/RNA Sequences, coupled with the random forest algorithm, classifies successfully the subtypes of influenza A virus strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.