Abstract

Ultra-low-field magnetic resonance imaging (ULF-MRI) has emerged as an alternative with several portable clinical applications. This review aims to comprehensively explore its applications, potential limitations, technological advancements, and expert recommendations. A review of the literature was conducted across medical databases to identify relevant studies. Articles on clinical usage of ULF-MRI were included, and data regarding applications, limitations, and advancements were extracted. A total of 25 articles were included for qualitative analysis. The review reveals ULF-MRI efficacy in intensive care settings and intraoperatively. Technological strides are evident through innovative reconstruction techniques and integration with machine learning approaches. Additional advantages include features such as portability, cost-effectiveness, reduced power requirements, and improved patient comfort. However, alongside these strengths, certain limitations of ULF-MRI were identified, including low signal-to-noise ratio, limited resolution and length of scanning sequences, as well as variety and absence of regulatory-approved contrast-enhanced imaging. Recommendations from experts emphasize optimizing imaging quality, including addressing signal-to-noise ratio (SNR) and resolution, decreasing the length of scan time, and expanding point-of-care magnetic resonance imaging availability. This review summarizes the potential of ULF-MRI. The technology's adaptability in intensive care unit settings and its diverse clinical and surgical applications, while accounting for SNR and resolution limitations, highlight its significance, especially in resource-limited settings. Technological advancements, alongside expert recommendations, pave the way for refining and expanding ULF-MRI's utility. However, adequate training is crucial for widespread utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call