Abstract

Research on SatCom Satellite communication (SatCom) nowadays aims at high data television broadcast and on-demand data transfer at a total rate ranging from several gigabit for mobile services up to one terabit for fixed terminals (Gayrard, Proceedings of the 1st international conference on advances in satellite and space communications SPACOMM, 2009; Thompson et al., Proceedings of the 3rd international conference on advances in satellite and space communications. IARIA XPS Press, Budapest, pp. 12–19, 2011; Vidal et al., Proceedings of the 1st AESS European conference on satellite telecommunications ESTEL, 2012; Duflos et al., Approaching the Terabit/s Satellite: A System Study. Executive Summary 1, Revision 1, ESA Contract No:. 4000103563, 2012). To pursue this goal, researchers have strengthened investigations to increase the number of spotbeams for geostationary earth orbit GEO satellites, increase the frequency reuse, and use higher frequency bands. For example, the S-band (2–4 GHz) and Ka-band (20–30 GHz) technologies gained importance over the L-band (1–2 GHz) and the Ku-band (12–14 GHz) for mobile and fixed terminal applications, respectively, because it allows to realize smaller transmit and receive apertures (Panagopoulos et al., IEEE Commun Surv Tutorials 6:2, 2004). The Ku-band and other bands above 10 GHz have also been investigated for mobile SatCom services (Arapoglou et al., Int J Satell Commun Netw 30:1, 2012; Liolis et al., IEEE Trans Veh Technol 59:1109, 2010), e.g., for trains, cars, and boats, such that mobile and fixed terminals may be served simultaneously in these bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call