Abstract

Advances in automated electron diffraction techniques, microstructural modeling, and the understanding of structure-property relationships for grain boundaries have resulted in the emergence of grain boundary engineering as a formidable tool for cost-effectively achieving enhanced performance in commercial polycrystalline materials (i.e., metals, alloys, and ceramics). In this article, some applications for grain boundary engineering technology that have been developed during the past several years are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.