Abstract
We discuss the procedure for obtaining measurement-based implementations of quantum algorithms given by quantum circuit diagrams and how to reduce the required resources needed for a given measurement-based computation. This forms the foundation for quantum computing on photonic systems in the near term. To demonstrate that these ideas are well grounded we present three different problems which are solved by employing a measurement-based implementation of the variational quantum eigensolver algorithm (MBVQE). We show that by utilising native measurement-based gates rather than standard gates, such as the standard controlled not gate (CNOT), measurement-based quantum computations may be obtained that are both shallow and have simple connectivity while simultaneously exhibiting a large expressibility. We conclude that MBVQE has promising prospects for resource states that are not far from what is already available today.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.