Abstract
The biochemical actions and side effects of recombinant erythropoietins (rhEPOs), their analogs and mimetics, their misuse as doping agents, and the principal analytical strategies developed to identify them in athletes' biologic fluids are reviewed. Patients who experience a range of pathologies have benefited from the administration of rhEPOs to correct severe anemia. Currently, monitoring the biologic effect of rhEPO in patients under treatment is by measuring the hemoglobin concentration. However, it may be valuable to directly monitor the actual levels of the administered drug and determine a dose-dependent correlation with any clinical adverse effect observed. This may permit the adoption of a patient-specific administration regime. Currently, the method of detecting EPO approved for doping control is an isoelectric-focusing, double-blotting, chemiluminescence assay based on charge differences between isoforms of rhEPOs and endogenous EPO in urine. The advantages and limitations of this method are presented. A new approach using sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a complementary tool to the established method is discussed. The application of matrix-assisted laser desorption/ionization mass spectrometry and liquid chromatography combined with tandem mass spectrometry for the direct detection of the rhEPO molecules may prove to be promising. Indirect evidence of rhEPO abuse by athletes is based on the analysis of blood parameters (hemoglobin hematocrit, reticulocytes, macrocytes, etc) and serum markers (concentration of EPO and serum transferrin receptors, etc). Enrichment of the screened parameters with gene or biochemical markers revealing altered erythropoiesis and adoption of longitudinal monitoring of athletes' hematologic and biochemical parameters could also be a complementary approach in the fight against doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.