Abstract
The effective calculation of static nonlinear optical properties requires a considerably high accuracy at a reasonable computational cost, to tackle challenging organic and inorganic systems acting as precursors and/or active layers of materials in (nano-)devices. That trade-off implies to obtain very accurate electronic energies in the presence of externally applied electric fields to consequently obtain static polarizabilities ( ) and hyper-polarizabilities ( and ). Density functional theory is known to provide an excellent compromise between accuracy and computational cost, which is however largely impeded for these properties without introducing range-separation techniques. We thus explore here the ability of a modern (double-hybrid and range-separated) Range-Separated eXchange Quadratic Integrand Double-Hybrid exchange-correlation functional to compete in accuracy with more costly and/or tuned methods, thanks to its robust and parameter-free nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.