Abstract
Recently, NMR-based metabolomic analysis has been used to acquire information based on differentiation among biological samples. In the present study, we examined whether multivariate analysis was able to be applied to natural products and/or material field. Each extraction of 24 leaf samples, divided into six locations from the tip of the stem in each of four strains, was analyzed by pattern recognition methods, known as Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). Twenty-four extracts from mulberry leaf showed independent spectra by 1H NMR. The separation of leaf extraction data due to the difference at six locations was achieved in the PCA score plot as correlation PC1 (86.1%) and PC3 (4.6%) and showed two loading plots, suggesting classification by leaf position as an independent variable in the loading plot. Moreover, the difference among six locations clarified the seven highest discrimination powers by the SIMCA method. Meanwhile, the PCA score plot obtained classification by the variety of mulberry strains with three loading plots, but the SIMCA method did not give a peak by classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.