Abstract

The Pd-Co-Ti catalyst was successfully prepared by the method of impregnation-precipitation-ball milling. The structure and redox properties of Pd-Co-Ti catalyst was investigated by N22 desorption, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and H22-TPR. The results show that the Pd-Co-Ti catalyst has a large specific surface area and a rich pore structure, and there are Co33O44 and anatase TiO22 crystals in the catalyst. The synergistic effect of Pd and Co improves the redox ability of Pd-Co-Ti catalyst. The catalyst is used to treat CO in the flue gas of rolling mills. It runs for 168 hours at a space velocity of 30,000 cm33/(g⋅⋅h) and a temperature of 280∘∘C, and the CO removal rate is basically maintained at more than 90%. The ratio of inlet CO content and O22 content affects the catalyst CO removal efficiency. When the ratio is greater than 0.5, the CO removal efficiency has a downward trend. The results of this study are of great significance to the practical application of CO oxidation technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.