Abstract

Oxygen has not been purposely introduced to the autotrophic denitrification systems and simultaneous nitrification/autotrophic denitrification (SNAD) has not been proposed. In this study, oxygen was introduced into a micro-electrolysis-enhanced Fe0-supported autotrophic denitrification (mFe0AD) system. The nitrogen removal performance was investigated and the application potential of iron-scraps-supported simultaneous nitrification/mFe0AD was evaluated. The results showed that Fe0AD was surprisingly enhanced by oxygen together with nitrification at average dissolved oxygen (DO) of 0.08–1.56 mg/L. The ammonia oxidizing bacterial, nitrite oxidizing bacteria, facultative autotrophic denitrificans, and iron compounds transformation bacteria were markedly enriched. Average denitrification rate shifted from 0.116 to 0.340 kg N/(m3·d) with increase of average total nitrogen removal efficiency from 31.4% to 90.5%. Oxygen could enhance the biological conversion and storage of iron compounds, which was capable of reducing the coating of Fe0 surface.The accelerating of oxygen on Fe0 passivation appeared when increasing the average DO from 1.56 to 2.17 mg/L. Therefore, the SNAD was recommended to be operated at the DO range of 0.08–1.56 mg/L. ME significantly enhanced Fe0AD, and the utilization of iron-scraps reduced its cost. The denitrification rate is comparable with methanol supported heterotrophic denitrification with 58.9% reduction on the cost. The iron-scraps supported SNAD is competitive in both denitrification rate and costs in the ammonia contaminated low-carbon water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call