Abstract

Due to the hidden benefits such as the possibilities to make energy density high, safety improved, and lifespan extended, solid-state batteries are a focal point in battery technology research. Current liquid electrolyte-based lithium-ion batteries, despite their maturity, have inherent issues like safety risks and limited energy density. While the advancement in solid-state battery technology can potentially overcome certain challenges, it also encounters its own issues including high contact interface impedance and ion transmission efficiency. For solid-state batteries to supplant traditional lithium-ion batteries in the future, these challenges must be addressed. The research provides an in-depth analysis of the three major types of solid-state electrolytes currently prevalent in the market, including oxide, sulfide, and polymer electrolytes. This is especially true for the electrochemical analysis of batteries after the electrolyte has been used. Each has its unique properties, synthesis methods, and limitations. Oxide electrolytes excel in high-temperature ionic conductivity but underperform at room temperature. Moreover, the synthesis of oxide solid electrolytes requires fine control over temperature and atmosphere, thus demanding high technical expertise. The sulfide category shows promise in room temperature conductivity, albeit with stability issues. Polymer electrolytes, however, are flexible and processable but have generally lower ionic conductivity. To enable large-scale applications, future research needs to focus on improving these electrolytes’ performance and developing cost-effective and efficient synthesis methods. The importance of research into solid-state lithium-ion batteries is tied to their capacity to transform the energy storage sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.