Abstract

A parameter-free electronic structure approach is applied to the study of stability and chemical order in substitutional bcc-based Mo-Ta, Ta-W, and Mo-W alloys. The method is based on a Green's function description of the electronic structure of random alloys. Configurational order is treated within the generalized perturbation method, and temperature effects are accounted for by a generalized mean-field approach. The practical application of this study to phase stability in Mo-Ta-W alloys is tested by converting the ab initio output thermodynamics of the three binary subsystems to a format amenable to a CALPHAD treatment. The results of this conversion are then used to predict isothermal sections of the ternary phase diagram of the Mo-Ta-W system that are compared with the results obtained directly from the ab initio approach with the cluster variation method. It is concluded that the proposed CALPHAD conversion of the ab initio results is a viable scheme to capture the alloy properties predicted from first-principles electronic structure calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.