Abstract

The aim of this research was to develop a simple and inexpensive process for reduction of Cr(VI) to Cr(III). Zinc oxide nanoparticles were synthesized with an easy co-precipitation procedure, and the addition of Cu2+ doping agent effectively enhanced the Cr(VI) reduction in the presence of ultrasound (US). XRD, FT-IR, FE-SEM, EDX, VSM, and XPS were used to determine the structural specifications of the zinc oxide nanoparticles. Under optimal conditions such as pH 3, initial Cr(VI) content of 20 mg/L, and catalyst dosage of 0.8 g/L, the ultrasonic/Cu-ZnO process showed a higher sonocatalytic activity (96.83%) than ultrasonic/ZnO (67.36%) after 60 min. By increasing pH and Cr(VI) concentration, the removal efficacy of Cr(VI) declined. The experimental data was well described with the first-order kinetic model. When initial Cr(VI) concentration increased from 10 to 50 mg/L, the first-order rate constant declined from 0.2326 to 0.0019 min-1 and electrical energy per order (EEO) enhanced from 19.81 to 2425.26 kWh/m3. Also, the ultrasonic/Cu-ZnO system exhibited considerable sonocatalytic performance in Cr(VI) reduction in the presence of hydrogen peroxide and citric acid, and complete removal was achieved within 60 min. The presence of anions negatively affected Cr(VI) reduction. Complete reduction was attained when ultrasound was applied at a power of 100 W. The catalyst activity was well maintained up to six consecutive cycles. In addition, the removal efficiency was approximately 62 and 65% for field water and real electroplating wastewater samples, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.