Abstract
The water vapor adsorption properties of raw and hydrothermally treated fly ashes with NaOH and their application prospect as evaporative coolers of roof surfaces were studied. Initially, samples were characterized through techniques like elemental analysis, X-ray diffraction, thermogravimetry, reflectance measurements and water vapor adsorption isotherms. Moreover, the water adsorption properties and the associated temperature variations were determined in a specific wind tunnel with controllable environmental conditions. The adsorption isotherms for fly ash were of type III indicating hydrophobic material with low water vapor adsorption. The hydrothermal treatment in an alkaline solution transformed the fly ash in hydrophilic material of type IV. Moreover, the treated samples were capable of lowering their surface temperatures due to water evaporation and the release of the latent heat. The maximum difference of temperature increase under simulated solar irradiation was observed between the treated fly ash and the concrete with values of 5.0, 5.4 and 7.5°C for the surface, middle and bottom position, respectively. The results indicate that the zeolitic materials prepared from the fly ash samples have a significant potential for solar cooling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.