Abstract
2020 has been a year marked by the COVID-19 pandemic. This event has caused disruptions to many aspects of normal life. An important aspect in reducing the impact of the pandemic is to control its spread. Studies have shown that one effective method in reducing the transmission of COVID-19 is to wear masks. Strict mask-wearing policies have been met with not only public sensation but also practical difficulty. We cannot hope to manually check if everyone on a street is wearing a mask properly. Existing technology to help automate mask checking uses deep learning models on real-time surveillance camera footages. The current dominant method to perform real-time mask detection uses Mask-R-CNN with ResNet as backbone. While giving good detection results, this method is computationally intensive and its efficiency in real-time face mask detection is not ideal. Our research proposes a new approach to the mask detection by replacing Mask-R-CNN with a more efficient model "YOLO" to increase the processing speed of real-time mask detection and not compromise on accuracy. Besides, given the small volume as well as extreme imbalance of the mask detection datasets, we adopt a latest progress made in few-shot visual classification, simple CNAPs, to improve the classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.