Abstract

Waste material identification is an essential part of waste recycling and treatment. Hyperspectral imaging (HSI) enables fast, accurate, nondestructive, and non-invasive identification of waste materials. In this study, HSI-based classification of typical industrial organic waste that cannot be sorted via traditional methods has been explored, namely, leather, paper, plastic, rubber, textile, and wood. The extreme gradient boosting (XGBoost) algorithm, a supervised machine learning algorithm that has never been investigated for waste identification-related fields, was adopted. The results show that XGBoost obtained a higher pixel-wise weighted average F1-score of 82.72% and a faster prediction time of 270 ms for the tested images compared with the commonly used partial least squares-discriminant analysis (77.83% and 444 ms). XGBoost was more effective and efficient in aiding HSI identification and classification of industrial organic waste. The technique can be a significant advancement in the development of an online sorting or identification platform, affording significant labor cost reduction, time savings, and the provision of a stable, accurate, and rapid method for waste intelligent identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.