Abstract

The degree to which an individual is willing to take risks i.e., risk tolerance is often cited as a significant causal element in the majority of workplace accidents. It is essential to determine the risk tolerance level of miners and utilise their risk profiles to design improved training modules, safety, recruitment, and deployment policies. This paper aims to identify the most critical factors (or features) influencing miners’ risk tolerance in the Indian coal industry and develop a robust prediction model to learn their risk tolerance levels. To do end, we first conducted a questionnaire survey representing the complete feature set (with 36 features) among 360 miners and divided their responses into five classes of risk tolerance. Next, we propose a wrapper based hybrid system that combines particle swarm optimization (PSO) and random forest (RF) to train a multi-class classifier with a subset of features. In general, the proposed system selects the best feature subset by iteratively generating different feature combinations using the PSO and training an RF classifier model to assess the effectiveness of the generated feature subsets for the F1-score. At last, we compared the PSO-RF with four traditional classification methods to evaluate its effectiveness in terms of precision, recall, F1-score, accuracy, goodness-of-fit, and area under the curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.