Abstract

BackgroundUrogenital tuberculosis (TB) is rare in children and usually develops due to reactivation of the foci in the genitourinary tract after the latency period following initial infection. Urogenital TB in children has no pathognomonic clinical features that can result in overlooking or misdiagnosing this clinical entity. Here, we report important findings regarding the pathogenesis and transmission of TB by using genotyping and whole-genome sequencing (WGS) in a study of renal TB case in a child.Case presentationA 13-year-old boy was admitted to the hospital because of high fever, severe dry cough, flank pain and painful urination. Abdominal ultrasonography and CT revealed an 8 mm calculus in the kidney, and clinical findings were initially interpreted as nephrolithiasis. Nevertheless, due to the atypical clinical presentation of kidney stone disease, additional investigations for possible TB were performed. The QuantiFERON®-TB Gold Plus test was positive, and the Mantoux test resulted in 15 mm of induration, confirming infection with Mycobacterium tuberculosis (Mtb). Chest X-ray was normal. Chest CT revealed calcified intrathoracic lymph nodes. The urine sample tested positive for acid-fast bacilli, and Mtb cultures were obtained from urine and bronchial aspirate samples, resulting in a final diagnosis of intrathoracic lymph node and renal TB. Contact investigation revealed that the child’s father was diagnosed with TB when the child was 1 year old. Genotyping and WGS analysis of Mtb isolates of the child and his father confirmed the epidemiological link and pointed to the latency of infection in the child.ConclusionsThis case report confirmed the development of active TB from calcified lesions in adolescent after 12 years of exposure, demonstrated the absence of microevolutionary changes in the Mtb genome during the period of latency, and proved the importance of appropriate evaluation and management to prevent the progression of TB infection to active TB disease. The use of WGS provided the ultimate resolution for the detection of TB transmission and reactivation events.

Highlights

  • Urogenital tuberculosis (TB) is rare in children and usually develops due to reactivation of the foci in the genitourinary tract after the latency period following initial infection

  • This case report confirmed the development of active TB from calcified lesions in adolescent after 12 years of exposure, demonstrated the absence of microevolutionary changes in the Mycobacterium tuberculosis (Mtb) genome during the period of latency, and proved the importance of appropriate evaluation and management to prevent the progression of TB infection to active TB disease

  • The use of whole-genome sequencing (WGS) provided the ultimate resolution for the detection of TB transmission and reactivation events

Read more

Summary

Conclusions

This case report confirmed the development of active TB from calcified lesions in adolescent after 12 years of exposure, demonstrated the absence of microevolutionary changes in the Mtb genome during the period of latency, and proved the importance of appropriate evaluation and management to prevent the progression of TB infection to active TB disease.

Findings
Background
Discussion and conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.