Abstract

Abstract Point precipitation frequency estimates (PPFEs) are used in the design of stormwater drainage infrastructures. The PPFEs for 1-year to 1,000-year recurrence intervals with durations ranging from 5 min to 60 days are published in the National Oceanic and Atmospheric Administration (NOAA) Atlas 14. NOAA's published PPFEs are accepted as a reliable resource for the design of urban drainage infrastructures, yet they are based on the stationary climate assumption. However, future climate change may affect the distribution, frequency, and intensity of precipitation events. To evaluate the potential impacts of climate change on the stationary climate assumption, a weather research and forecasting (WRF) model was developed based on the medium climate change emission scenario. Then, the PPFEs were determined for 2010–2015, 2030–2035, 2050–2055, and 2070–2075 at six different locations in the state of Arizona. The comparison of the published and simulated PPFEs revealed a varying trend in depth and frequency values dependent on location and climate. Additionally, depth values were diminished for <3-h events at a majority of the stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.