Abstract
AbstractThe impact of climate teleconnections on the regional hydrometeorology has been well studied, but very little effort has been made to relate climate teleconnections with groundwater flow variation. In this study, we used a wavelet coherence method to analyze monthly climate indices, precipitation, and spring discharge data, and investigated the relation between major teleconnection patterns (the Arctic Oscillation, North Atlantic Oscillation, Pacific Decadal Oscillation, El Niño‐Southern Oscillation, and Indian Ocean Dipole) and karst hydrological process in Niangziguan Springs Basin, China. The results indicate precipitation and spring discharges correlate well with climate indices at intra‐ and inter‐annual time scales. Further, the climate indices are mainly correlated with precipitation at shorter periodicities, but correlated with spring discharge at longer scales. The difference reflects the modulation of karst aquifers on precipitation‐spring discharge during the processes of precipitation infiltration into the ground, and subsequent transformation into spring discharge. When teleconnection signals are transmitted into spring discharge via precipitation infiltration and groundwater propagation, some high‐frequency climatic signals are likely to be filtered, attenuated, and delayed, thus only low‐frequency climatic signals are preserved in spring discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.