Abstract

Assessment of the wave climate at near coast is vital for estimation of morphological changes, such as growth of sand spit and associated siltation of tidal inlets. Vellar (bar-built) estuary is one of the prominent estuaries along the southeast coast of India, located at 11°30′N and 79°46′E, less studied in terms of its morphological features. The inlet of Vellar is exposed to high energetic waves, inducing large sediment transport rates and shoreline changes. Local wave characteristics are not accurately defined and the available wave information at near coast is limited (point based observations). In the present study, three decoupled numerical models are employed to derive the monthly nearshore wave climate at Vellar by transforming waves from deep water to nearshore. These models are independently validated with buoy observations in deep water and wave gauge data at nearshore. Based on the nearshore wave data, littoral drift along the coast was estimated and compared with the spit growth at Vellar inlet. The estimated average littoral drift along this coast from February to October is 1.93 × 106 m3 toward north and from November to January it is 1.52 × 106 m3 toward south, resulting in a net northerly drift. Results indicated that increase in the wave energy during the period of July to September is responsible for the maximum growth of the sand spit observed in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call