Abstract

This study discusses the use of an additional layer in the cathode side of a proton exchange membrane fuel cell (PEMFC) for improved water management at dry conditions. The performance of fuel cells deteriorates significantly when low to no gas humidification is used. This study demonstrates that adding a non-porous material with perforations, such as stainless steel, between the cathode flow field plate and the gas diffusion layer (GDL) improves the water saturation in the cathode GDL and catalyst layer, increases the water content in the anode, and keeps the membrane hydrated. The slight voltage drop in the performance as a result of transport limitations is justifiable since the overall durability of the cell at these extreme conditions is enhanced. The results show that the perforated layer(s) enhances the operational life of the PEMFC under completely dry conditions. These extreme conditions (dry gases without humidification, 90 kPa, 75 °C) were used to accelerate the failure modes in the fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call