Abstract

In this study, a novel set-up using water-assisted UV processing was developed and evaluated for its decontamination efficacy against murine norovirus (MNV-1) inoculated on fresh blueberries for both small and large-scale experimental setups. Blueberries were skin-inoculated with MNV-1 and treated for 1–5min with UV directly (dry UV) or immersed in agitated water during UV treatment (water-assisted UV). The effect of the presence of 2% (v/v) blueberry juice or 5% crushed blueberries (w/w) in wash water was also evaluated. Results showed that water-assisted UV treatment generally showed higher efficacies than dry UV treatment. With 12,000J/m2 UV treatment in small-scale setup, MNV reductions of >4.32- and 2.48-log were achieved by water-assisted UV and dry UV treatments, respectively. Water-assisted UV showed similar inactivating efficacy as 10-ppm chlorine wash. No virus was detected in wash water after UV treatment or chlorine wash. MNV-1 was more easily killed on skin-inoculated blueberries compared with calyx-inoculated berries. When clear water was used as wash water in the large-scale setup, water-assisted UV treatment (UV dose of 12,000J/m2) resulted in >3.20 log and 1.81 log MNV-1 reductions for skin- and calyx-inoculated berries, respectively. The presence of 2% blueberry juice in wash water decreased the decontamination efficacy of water-assisted UV and chlorine washing treatments. To improve the inactivation efficacy, the effect of combining water-assisted UV treatment with chlorine washing was also evaluated. The combined treatment had better or similar inactivation efficacy compared to water-assisted UV treatment and chlorine washing alone. Findings of this study suggest that water-assisted UV treatment could be used as an alternative to chlorine washing for blueberries and potentially for other fresh produce.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call