Abstract
Vortex flow in a pump intake could affect a pump operation significantly if not treated appropriately. Many researches have been conducted to determine the best control method for vortex flow in pump sumps so that the pump lifespan can be maximized. In this study, a vortex control principle designed to minimize the impact of submerged vortex flow in pump sump on major pump components is presented. This principle employs a device called the plate type floor splitter which serves the function of eliminating vortices formed on the sump floor and reduces the intensity of swirling motion in the intake flow. A pump sump model was built to carry out the study by installing a floor splitter plate sample under the pump suction inlet and the corresponding parameters used to quantify the swirl intensity known as the swirl angle was measured. Procedures for the measurement were conducted based on ANSI/HI 9.8-2018 standard. A numerical simulation was performed to study the flow in a full-scale pump sump. The results showed that the installation of floor splitter plate can eliminate vortices efficiently and reduce swirl angle significantly. However, optimization of floor splitter design is needed to achieve a reduction effect that can reduce swirl angles to an acceptable value of lower than 5° according to ANSI/HI 9.8-2018 standard.
Highlights
Pump intake is the part of a pump that draws fluid from the reservoir called the sump as a result of pressure difference generated by the impeller
The device was installed in a pump sump model to eliminate vortices formed at the intake and reduce the swirling motion in the intake pipe as a method to improve pump efficiency in actual applications
To complement the results obtained in the experiment, a numerical simulation of the flow in a full-scale pump sump was conducted
Summary
Pump intake is the part of a pump that draws fluid from the reservoir called the sump as a result of pressure difference generated by the impeller. In most cases, pumped fluid enters the intake in a swirling motion due to geometric features of the sump [1]. Inappropriate sump design such as abrupt changes in sump boundaries, narrow clearance under the pump inlet and asymmetric orientation of the approach channel to the sump will lead to the formation of swirls and vortices [2]. Strong vortices may cause damages to the pump impeller by channelling air to the impeller surface and initiate adverse effects such as cavitation and vibration [3]. Excessive swirls in the intake flow can impose imbalance loading to the impeller and even bring resistance to the impeller rotation by introducing swirl rotation in the opposite direction [4]. Due to site condition and operational restrictions, optimal sump design may not be achieved, and local flow correction devices are used as remedial measures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.