Abstract

AbstractEstablishing an accurate chronology is crucial for interpretation of ice core-based climatic records. While high snow accumulation rates characterise coastal Antarctica, thus enabling recovery of highly resolved climatic records, summertime melting at such low-elevation sites offers challenges in establishing a reliable chronological framework through traditional approaches using the seasonality of stable water isotope and ionic proxy records. Here, we assess visual stratigraphy (VS) obtained from line-scan images as a proxy for annual layer counting in firn section (top 50 m) of the IND-36/B9 ice core (dated 1919–2016 CE) from the Djupranen Ice Rise in central Dronning Maud Land, East Antarctica. We also used these images to obtain melt history for the site and found that traditional thickness-based quantification of melt proportion results in significant overestimations. Since density has dominant control on VS profile over the firn section, we first used circulant single-spectrum analysis to remove the secular trend and then we extracted the seasonal VS signals attributed to dust and sea-salt inclusions. We find that melt layers do not significantly alter the VS records if masked during pre-processing. The age–depth model based on the reconstructed VS profile revealed an excellent match with identified time-markers within an uncertainty of ±2 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call