Abstract

Abstract Cr-C coatings containing different amount of carbon ranging from ∼5 to 50 at.% were prepared by the direct current (DC) magnetron sputtering on a polished substrate of polycrystalline silicon. The thickness of the samples was about 400 nm. We characterized the composition and the structure of the as-received coatings and those annealed at 500 °C by X-ray diffraction (XRD), Energy dispersion X-ray spectroscopy (EDX) and valence-to-core X-ray emission spectroscopy (vtc-XES) methods As follows from XRD measurements, the samples with the carbon content above 35 at.% do not demonstrate any sign of the long-range order and annealing at 500 °С does not change their crystallinity. The vtc-XES curves of the as-prepared and annealed samples can be fitted as a superposition of corresponding spectra of chromium metal and chromium carbide (Cr3C2) phases. After the annealing, the content of carbides in the samples (and, correspondingly, the content of covalently bonded carbon) somewhat increases. This suggests that the as-received coatings contain a certain amount of carbon that is not covalently bonded to chromium (most likely, elemental carbon) and their annealing at 500 °С transforms this carbon into the additional (of the order of 2–5 at.%) amount of chromium carbide compounds. It deserves mentioning that for Cr-C coatings prepared by the electrochemical deposition from Cr(III) electrolytes containing organic compounds we have not observed changes in the vtc-X-ray emission spectra after similar annealing. This suggests that electrochemical deposition method in contrast to magnetron sputtering technique even at low temperatures favors the formation of only covalently bonded carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.