Abstract

U-Pb. systematics of detrital zircons carry a mineral-specific information summarizing important geologic events during the preelastic slate of the minerals. Comparisons with U/Pb isotope rati of zircons from potential provenances reveal relationships between source areas of the zircons and their final location of deposition in a sedimentary basin. The Palaeozoic zircon detritus accumulated in sedimentary basins on the Rhenohercynian crustal segment is taken as an example to elucidate the plate-tectonical induced changes of the source areas by significant changes of the 206Pb/238 vs. 207Pb/235ratios in the zircons.The U-Pb systematic of detrital zircon- from the Cambrian sediments deposited in the Brabant Massif and in the Ardennes indicale two source areas. Part of the detritus derived from an area. where strong Cadomian-Panafrican events influenced the U-Pb systems of the zircons. The oilier part reflects a source, in which the U-Pb systems were able to preserve their Arehaean to Early Proterozoic age information. Zircons of the latter source record the most ancient ages so far observed in detrital zircons of the later Rhenohercynian crustal seg ment. The similarities with the U/Pb isotope ratios of zircons from the Armorican Massif, the Bohemian Massif. and certain regions of the Mps indicate a geotectonic position of the sedimentar) basin during Cambrian times in the periphery of the Condwana mega-continent.The detrital zircons accumulated in the Variscan Rhenish basin during the Lower Devonian show a completely different summarizing age information. The majority of the zircons reflect a Laurussian-type origin. which suggests a palaeogeographic position of the Variscan Rhenohercynian basin close to Laurussia. Euhedral zircons crystallized during Caledonian times document the erosion of Caledonian granitoids from structural highs in the Mid European Caledonides.Zircons of the Lower Carboniferous flysch sediments of todays Eastern Rhenish Massif originate from two source areas characterised by very different geologic histories. Euhedral zircons represent a rather young component of about 410 Ma in the detritus, whereas. in contrast. the well rounded crystals show a summarizing age-information identical to that of the zircons found in the Cambrian sandstones. The low ages resemble intrusion ages as recorded from the Mid-German-Crystalline-Rise, the high age reflect a Gondwana-type input into the Rhenohercynian sedimentary basin during Lower Carboniferous times. The detritus thus documents the Variscan collision and a renewed coherence of the Rhenohercynian crustal segment to Cnndwana.The zircon population from Upper Carboniferous molasse deposits is comprised of Condwana-tуpc material and of mate rial with similar U/Pb ratios as recorded in the Lower Devonian zircons. In parts the Variscan molasse must have been derived from sediments once deposited in a southern part of the Rhenohercynian basin and in the Saxothurìngian basin. U/Pb ratios of euhedral and round diamond-like lustrous zircons indicate a major geologic event at the Namurian/Westphalian boundary (310-315 Ma). These zircons thus reflect an influx of detritus into the molasse from other source rocks, probably synsedimentary volcanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.