Abstract

Based on 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) acting as dopant and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) acting as hole-blocking layer, the EL spectra of two kinds of organic light-emitting diodes (OLEDs) ITO/NPB/BCP/Alq3∶DCJTB/Alq3/Al (structure A) and ITO/NPB/BCP/Alq3/Alq3∶DCJTB/Alq3/Al (structure B) were investigated. Our experimental data showed that the relative emission intensity of green light was low in the EL spectra of devices with structure A, and it was hard to enhance the relative emission intensity of green light by only increasing the thickness of Alq3 layer. On the other hand, the thin layer of Alq3 inserted between BCP layer and dopant layer (Alq3∶DCJTB) had a tremendous impact on the relative emission intensity of green light for devices with structure B, and a strong green light emission could be obtained by inserting an ultrathin layer of Alq3. Further, by optimizing the device structure, a stable white OLED ITO/NPB(50 nm)/BCP(3 nm)/Alq3(3 nm)/Alq3∶DCJTB(1%(w))(5 nm)/Alq3(7 nm)/Al was obtained with ultrathin organic layers of BCP, Alq3 and Alq3∶DCJTB. The CIE of the device almost kept at (0.33, 0.37) with increasing the applied voltages (14-18 V), and its luminance reached 11521 cd·m-2 at the current density of 432 mA·cm-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.