Abstract

An overview of possible mechanisms by which sonication can influence electrochemical processes is given. Four mechanisms are discussed: – acoustic streaming; – microstreaming and turbulence due to cavitation; – formation of microjets in the course of collapse of cavitation bubble; – shock waves; and possible effects are illustrated on several examples. The most effective process is formation of microjets, which can not only decrease diffusion layer thickness under 1 μm, but also activate (depassivate) electrode surface. Design of experimental arrangement with maximum participation of microjets is proposed. Two approaches are proposed: – focusing of ultrasound on the working electrode and reduction of energy losses by over-pressure; – “tuning” the reactor to obtain resonance, i.e. formation of stationary waves by activating reactor in its resonant mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.