Abstract

The objective of this research was the development, optimization, and demonstration of an ultrasonic assisted extraction (UAE) based method for organic anthropogenic waste indicators (AWIs) with a range of physicochemical properties from soil and sediment samples. The optimized method was designed to be cost effective compared to existing extraction methods, which may require large quantities of consumables, produce substantial volumes of organic waste, or require costly instrumentation or equipment. Reagent grade sand, soil collected from the native grassland in proximity to Eastern Washington University (EWU), and sediment samples collected from the Spokane river were used as sample matrices during method development. These matrices were fortified with eight AWIs of varying chemical properties that are representative of a variety of household, industrial, and agricultural sources. The recoveries of the AWIs spiked onto these matrices were determined in the extracts using gas chromatography/mass spectrometry (GC/MS). These values reflect the efficiency of the method for extraction of these analytes from representative environmental matrices. Recoveries ranged from 46.1% to 110% in the fortified soil and from 49.2% to 118.6% in the fortified sediment samples, which is comparable with existing methods for the study analytes. The optimized method was then used to quantify AWIs in a biosolid-amended soil. Indole and p-cresol were detected in the biosolid-amended soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.