Abstract

Pharmaceutical tablet manufacturing has seen a paradigm shift toward continuous manufacturing and twin-screw granulation-based technologies have catalyzed this shift. Twin-screw granulator can simultaneously perform unit operations like mixing, granulation, and drying of the granules. The present study investigates the impact of polymer concentration and processing parameters of twin-screw melt granulation, on flow properties and compaction characteristics of a model drug having high dose and poor tabletability. Acetaminophen (AAP) and polyvinylpyrrolidone vinyl acetate (PVPVA) were used as a model drug (90-95% w/w) and polymeric binder (5-10%w/w), respectively, for the current study. Feed rate (~650-1150g/h), extruder screw speed (150-300rpm), and temperature (60-150°C) were used as processing variables. Results showed the reduction in particle size of drug in the extrudates (D90 of 15-25μm from ~80μm), irrespective of processing condition, while flow properties were a function of polymer concentration. Overall, good flowability of the products and their tablets with optimum tensile strength can be obtained through using high polymer concentration (i.e., 10% w/w), lower feed rate (~650g/h), lower extruder screw speed (150rpm), and higher processing temperatures (up to 120°C). The findings from the current study can be useful for continuous manufacturing of tablets of high dose drugs with minimal excipient loading in the final dosage form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.