Abstract

Tris(trimethylsilyl)borate (TMSB) is applied to suppress the self-discharge of charged LiNi1/3Co1/3Mn1/3O2 (LNCM) under high potential. The contribution of TMSB is understood via physical and electrochemical characterizations. It is found that the charged LNCM under 4.5V suffers serious self-discharge: potential drops to 0.5V and crystal structure collapses, but this self-discharge is effectively suppressed by applying TMSB in a standard (STD) electrolyte. Different from the failure from cycling, which is caused mainly by the electrochemical oxidation decomposition of electrolyte, the self-discharge results from the interaction between charged LNCM and electrolyte. TMSB is preferentially oxidized in comparison with STD electrolyte, generating a solid electrolyte interphase film on LNCM, which avoids the direct contact between LNCM and electrolyte and thus suppresses the self-discharge of the charged LNCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.