Abstract

Microspore or anther culture has been used to produce desirable meiotic recombinants in numerous species. However, the utilization of these recombinants relies on inefficient genome doubling procedures to obtain fertile doubled haploid plants. This study presents a simple and rapid procedure to generate fertile doubled haploids in Brassica napus cv. Topas using trifluralin (α,α,α‐trifluoro‐2,6‐dinitro‐N,N‐dipropyl‐p‐toluidine), a plant specific microtubule inhibitor. The effects of trifluralin on microtubule depolymerization and chromosome doubling in embryogenic microspore cultures of B. napus were examined and compared with those of colchicine. Indirect immunofluorescence labeling of isolated microspores indicated that microtubules were depolymerized within 30 min of trifluralin treatment and after 3–8 h of colchicine treatment. The direct application of these microtubule inhibitors to microspore cultures resulted in the recovery of fertile doubled haploid plants. Continuous culture in the presence of colchicine, was more effective than 18‐h treatments for fertile plant production but resulted in abnormal embryo formation and recalcitrant plant regeneration. The application of 1 or 10 μM trifluralin during the first 18 h of microspore culture was found to be the superior method for doubled haploid production. The embryos generated after trifluralin treatment developed normally, germinated readily and of the plants produced, close to 60% were fertile. The use of trifluralin to double chromosomes very early in microspore cultures is a simple process requiring minimal manipulation and should be very useful for genetic studies and breeding programs of B. napus and possibly other species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call