Abstract

Anti-plane electroelastic problems are studied by the Trefftz boundary element method (BEM) in this paper. The Trefftz BEM is based on a weighted residual formulation and indirect boundary approach. In particular the point-collocation and Galerkin techniques, in which the basic unknowns are the retained expansion coefficients in the system of complete equations, are considered. Furthermore, special Trefftz functions and auxiliary functions which satisfy exactly the specified boundary conditions along the slit boundaries are also used to derive a special purpose element with local defects. The path-independent integral is evaluated at the tip of a crack to determine the energy release rate for a mode III fracture problem. In final, the accuracy and efficiency of the Trefftz boundary element method are illustrated by an example and the comparison is made with other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.