Abstract

The transient responses of an elastic beam to large dynamic deformations were analyzed numerically, using the transfer matrix method. Geometrically nonlinear differential equations were linearized by introducing increments of unknown functions, and the resulting linear equations were approximated by finite difference equations. A field transfer matrix was introduced for the analyses of large deformations; this determined the relationship between the incremental state vectors at both ends of the elastic segments. The Newmark β formulation was chosen to approximate the equation of motion for concentrated masses. A concentrated mass point transfer matrix and an inhomogeneous vector were introduced for analyses of the transient responses of the beams. A superposition scheme for the transfer matrix method was proposed as an effective means of obtaining a solution satisfying the boundary conditions at both ends of the beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call