Abstract
Among various available materials used in transparent and flexible devices, MXenes are attracting attention as a brand-new candidate in this category. Ti3C2Tx MXene as a 2D material has exceptional properties, making it a potential material having numerous applications in different areas. Because of its high conductivity, it can be used in transparent conducting electrodes (TCEs). In this study, the MXenes etched by highly concentrated acid at 50 °C,were spin-coated on polyethylene terephthalate (PET) film and annealed at moderate temperatures up to 170 °C. The adhesion of MXene to PET was found to be remarkably improved by annealing. These TCEs exhibited a sheet resistance of ∼424 Ω/sq. and transmittance of ∼87%. The aging stability of MXene-coated PET films against oxidation under ambient conditions was studied up to 28 days and resistance change was found ∼30% during this period. The flexibility test showed low bending resistance change (∼1.5%) at 1000th cycle and cumulative resistance change of ∼20% at a bending radius of ∼3.9 mm after 1000 cycles. These transparent, flexible, and conducting electrodes were used to fabricate polymer dispersed liquid crystal (PDLC)-based flexible smart windows. The smart windows fabricated by curing PDLC mixture sandwiched between the MXene electrodes were also found flexible in ON/OFF states. The MXene-based flexible smart windows resulted in good opacity in the OFF state and high transparency in the ON state, exhibiting low threshold voltage <10 V and high transmittance ∼80% at 60 V. The flexible smart windows operated normally even at ∼4 mm bending radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.