Abstract

Crude oil distillates are a highly useful industrial product, mainly for energy generation. Unfortunately, they are rarely studied, mainly due to the low accessibility to products directly obtained from the distillation process, which is a laborious, expensive, and time-consuming operation. This work presents and discusses the use of time-domain nuclear magnetic resonance (TD-NMR) as a simple, affordable, and straightforward tool for the development of correlations supported on the transverse relaxation time (T2 ) and boiling temperature. The results point out a high convergence between TD-NMR experimental data and the ASTM D2892 method for distillates from light, medium, and heavy oils, with up to 52.20% of accumulated mass and boiling point temperature (Tb ) up to 400°C. Furthermore, an unprecedented relationship between T2 values and the accumulated mass of the distillates is first demonstrated. This new insight opens new perspectives for future prediction of accumulated mass for unknown crude oils, placing the TD-NMR relaxometry as an appeal spectroscopy approach with a potential to meaningfully contribute to the daily refining petrochemical industry field operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.