Abstract

Twenty 3,4,5-triaryl-1-R-1,2-diphospholes were studied within the framework of density functional theory (DFT) and experimentally by UV/vis spectroscopy to check their suitability for opto-electronic applications. Time-dependent DFT (TD-DFT) calculations employing the PBE0 hybrid density functional combined with moderately sized def-TZVP basis set were shown to excellently reproduce the experimental absorption spectra of various 1,2-diphospholes. Frontier molecular orbital analysis reveals that HOMO and LUMO are mainly localized on the diphosphole ring and, to some extent, on the aryl moieties. The HOMO-LUMO energy gap can be easily tuned by variation of substituents introduced in para-positions of the aryl moieties and, to a lesser extent, by modification of the R group at phosphorus atom. As a result, both position and intensity of the absorption bands with highest wavelength are strongly influenced by the above structural changes. The UV-spectra simulations reveal that the introduction of donor groups like para-OMe, para-NMe2, and para-N(H)Ph, which are in n-π conjugation with the aryl moieties, should result in absorption of visible light by the corresponding 1,2-diphospholes, thus making them promising candidates for new functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call