Abstract

We measured the fluorescence decays and spectra of perylene adsorbed from solution into zeolite X crystals of 2-3 microm in diameter at the level of individual crystals by the application of a microscopy method coupled with a single photon counting apparatus and a multichannel spectrophotometer. We found that both decays and spectra are particle-dependent, i.e. a particle-to-particle difference was observed for the fluorescence decay curves at a fixed loading level along with a particle-dependent spectral change due to the various contribution of excimer emission band relative to those of three monomers. These findings are due to a non-homogeneous distribution which is confirmed by the various emission intensities of perylene-loaded zeolite crystals observed by fluorescence microscopy. Previously, a homogeneous distribution of the guest between zeolite crystals has been just taken for granted and not justified by experiment. The present result suggests that commonly employed collective measurements such as UV-VIS absorption and emission spectroscopies, IR and Raman spectroscopies, and NMR of bulk zeolite powders provide only averaged results and may sometimes suffer from acquiring precise molecular level pictures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.