Abstract
The deployment of mutant resources for plant functional genomics is ever increasing with the availability of genome information of economically important crops. Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach for high-throughput discovery of induced mutations in the desired gene(s) from a mutant population developed through mutagenesis. TILLING accelerates trait discovery and crop genetic improvement. TILLING strategies for several crops have been developed for the identification of the desired mutants. The combined use of TILLING and the high-throughput sequencing technologies can overcome the bottlenecks of traditional TILLING approaches and facilitates the rapid discovery of useful mutations. Several important mutants related to economically important traits have been identified in agronomic and horticultural crops by employing TILLING by sequencing (TbyS) and, thus, have sizeable potential in crop improvement. In this chapter, we highlight significant developments in the use of TILLING strategies along with the application of high-throughput techniques, such as high-resolution melting (HRM) and next-generation sequencing (NGS) in the discovery of mutations and further discuss the challenges and prospects of TILLING in modern crop breeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.