Abstract

The origin of para-articular cysts is poorly understood and controversial. The relatively common, simple (extraneural) cysts are presumed to be derived from joints, although joint connections are not always established. Rarer complex cysts are thought by many to form de novo within nerves (intraneural ganglion cysts) or within vessels (adventitial cysts) (degenerative theory). We believe that these simple and complex ganglion cysts are joint-related (articular theory). Joint connections are often not readily appreciated with routine imaging or at surgery. Not identifying and/or treating joint connections frequently leads to cyst recurrence. More sophisticated imaging may enhance visualization of these joint connections. We created a 3D rendering technique to assess potential joint connections of simple and complex cysts localized to the knee and superior tibiofibular joints in patients with fibular (peroneal) neuropathy. Two- and three-dimensional data sets from MRI examinations were segmented semiautomatically by signal intensity with further refinement based on interaction with the user to identify specific anatomic structures, such as small nerves and vessels on serial images. The bone, cysts, nerves, and vessels were each assigned different color representations, and 3D renderings were created in ANALYZE using the data sets closest to isotropic (voxel with equal length in all dimensions) resolution as the primary background rendering. We selected four cases to illustrate the spectrum of pathology. In all of these cases, we demonstrated joint connections and correlated imaging and operative findings. Surgery addressing the cyst and the joint connection resulted in excellent outcomes; postoperative MRIs done more than 6 months later confirmed that there was no recurrence. In addition to highlighting the important relationship of these cysts to neighboring anatomic structures, this 3D technique allows visualization of "occult" connections not readily appreciated with standard MR imaging. We believe that these joint-related cysts have a common pathogenesis; they dissect through a capsular rent and follow the path of least resistance; they may form simple cysts by dissecting out into the soft tissue, or more complex cysts by dissecting within the epineurium of nerves or adventitia of vessels (along an articular branch), or various combinations of all of these types of cysts. Understanding the pathogenesis for cyst formation will improve surgical management and outcomes. We have adapted this 3D technique to enhance the visualization of cysts occurring at other joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.