Abstract

Application of thermosensitive polymers as an embolic material for intravascular neurosurgery was investigated. We intended to use thermosensitive polymers to occlude vessels by precipitation in response to body temperature. Copolymers of N-isopropylacrylamide (NIPAM) and N-n-propylacrylamide (NPAM) were selected as thermosensitive polymers. To determine the optimal lower critical soluble temperature (LCST) for the embolic material, we developed an in vitro flow model. In this study the copolymers with an LCST of 24-26 degrees C showed appropriate precipitation. To prove the occlusion of vessels in vivo, we injected the copolymers into a rabbit kidney through a microcatheter. The extent of embolization was judged by angiography and histological examination. An acute toxicity test of the copolymer of NIPAM and NPAM was performed in comparison with that of the NIPAM monomer. The copolymer used in this paper showed no acute toxicity in mice. Water solubility, non-adhesiveness, and non-toxicity are the advantages of the use of thermosensitive polymers as an embolic material. By changing the LCST, various embolic materials can be designed. Based on our results, we believe that the application of thermosensitive polymers as a new embolic material is very promising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call