Abstract

Experiments in idealized two-layer fire environments have demonstrated that concentrations of carbon monoxide and other gaseous combustion products can be correlated in terms of the global equivalence ratio. In this paper the results of detailed chemical kinetic modeling and equilibrium calculations are used to gain insight into the chemical stability of the gases observed within the upper layers of such fires. It is demonstrated that the production of upper-layer gases is kinetically controlled and that for rich conditions concentrations of the upper-layer gas components are far from those expected for thermodynamic equilibrium at the layer temperatures. Criteria are provided for determining whether or not the correlations can be employed to predict the generation of combustion products in enclosure fires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.