Abstract
Ground source heat pumps (GSHPs) have been shown to be an effective means of decarbonizing building heating and cooling, but the operation of these systems at scale presents challenges to sites and the grid due to increases in peak demand. In this study, we investigate how the use of Thermal Energy Storage (TES), in the form of stratified water storage, could reduce the peak daily demand associated with GSHP systems and thus improve their cost effectiveness. This system was compared to a Combined Heat and Power (CHP) plant, to investigate the potential cost and emissions impacts of electrification on large energy users transitioning from high efficiency fossil fuel equipment. This study builds on previous research by using a significant campus area, and investigating the various impacts of an electrified system versus a state of the art fossil fuel system. An established method of TRNSYS modeling is used for the heat pumps and borehole heat exchangers (BHEs), along with the TES. The GSHP system with TES is modeled to follow industry standards and sized to provide an optimal balance of capital and operating costs. Costs were investigated for a unique large energy user rate structure, as well as for a more common generalized rate structure. The results show that the addition of TES to the GSHP system could reduce operating costs by 4.5%, but still incurs a 5.64% cost increase from the baseline CHP system. It is also shown, however, that a tactical integration of heat pumps into the CHP system is the most cost effective solution, only increasing the operating costs by 4.71%. Likewise, the impacts of different rate structures are highlighted, with the TES only resulting in 0.75% cost savings under the generalized utility rate. Furthermore, it is shown that thermal storage has great potential for demand reduction, with the addition of storage incurring a decrease of 7–22% in annual peak demand kW, dependent on the rate structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.