Abstract
One of the major difficulties encountered in catalytic research has been the experimental characterization of the catalyst surface in its working state. Using thermal desorption techniques, we have developed a method capable of providing a quantitative measure of the concentrations of certain adsorbed reactants during catalysis. In a study of the oxidation of CO on polycrystalline platinum, three distinct reaction mechanisms have been distinguished: (1) the interaction of an oxygen molecule with a vacant Pt surface site and an adjacent adsorbed CO molecule forming a complex which dissociates to form a CO 2 molecule and an adsorbed oxygen atom; (2) the reaction between adsorbed CO and an adsorbed oxygen atom, a process in which surface transport is required to bring the reactants together; and (3) the reaction between a colliding CO molecule and an adsorbed oxygen atom. Rate constants for the reaction steps have been measured, and the active surface sites and reactive surface states on the Pt catalyst have been characterized in terms of the adsorption properties of CO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.