Abstract

In this paper, we have constructed a WKB approximation for graphene having a Y-shaped Kekulé lattice distortion and a special folding of the K and K′ valleys, which leads to very specific linear energy dispersions with two non-equivalent pairs of subbands. These obtained semi-classical results, which include the action, electron momentum and wave functions, are utilized to analyze the dynamics of electron tunneling through non-square potential barriers. In particular, we explore resonant scattering of an electron by a potential barrier built on Kekulé-distorted graphene. Mathematically, a group of consecutive equations for a semi-classical action have been solved by following a perturbation approach under the condition of small strain-induced coupling parameter Δ0≪1 (a good fit to its actual value Δ0∽ 0.1). Specifically, we consider a generalized model for Kek-Y graphene with two arbitrary Fermi velocities. The dependence of the electron transmission amplitude on the potential profile V(x) and band parameters of Kekulé-patterned graphene has been explored and analyzed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call